34 research outputs found

    Biocidal activity in soils by biochar from pyrolysis biorefinery process

    Get PDF
    Useful soil applications of biochar, the biocarbon solid coproduct of biomass pyrolysis, will likely improve the economics of pyrolysis biorefineries. Adding biochar to soils to achieve any number of goals should also consider unintended effects upon soil biology. Herein, we explored two biocidal activities of fluidized-bed fast pyrolysis biochars (FPBC) created over a temperature range of 450-700 oC on the survival of pathogenic E. coli O157:H7 and beneficial arbuscular mycorrhizas (AM) symbioses in soils. For pathogen decontamination, FPBC created at \u3c 500°C proved microbiologically inert, while that created at 600°C proved biocidal over 7 weeks of sampling (P \u3c 0.05) with populations significantly reduced at 3% and 3.5% concentration (5.34 and 5.84 log CFU/g, respectively) compared with concentrations of 0.0-2.0%. Ageing of FPBC created under similar conditions for 2 years resulted in loss of efficacy. FPBC greatly reduced colonization of roots by the AM fungus when we examined the interaction of biochar addition and arbuscular mycorrhizal (AM) fungus inoculation upon growth and phosphorus (P) uptake by Allium porrum L. These responses could be related to physicochemical properties of the biochars as higher surface areas were accompanied by higher AM fungus colonization. The findings are pertinent to selecting pyrolysis biorefinery biochars for application to agricultural soils for purposes such as inactivation of pathogenic bacteria while being mindful of potential impacts upon the AM symbiosis if applied. Biochar II: Production, Characterization and Applications. Cetraro (Calabrial) Italy, September 15-20, 2019

    The order of the quantum chromodynamics transition predicted by the standard model of particle physics

    Get PDF
    We determine the nature of the QCD transition using lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities.No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.Comment: 7 pages, 4 figure

    Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    Get PDF
    Chagas disease is one of the most important parasitic diseases in Latin America. Since the 1980's, many national and international initiatives have contributed to eliminate vectors developing inside human domiciles. Today's challenge is to control vectors that are non-adapted to the human domicile, but still able to transmit the parasite through regular short stay in the houses. Here, we assess the potential of different control strategies applied in specific spatial patterns using a mathematical model that reproduces the dynamic of dispersion of such ‘non-domiciliated’ vectors within a village of the Yucatan Peninsula, Mexico. We show that no single strategy applied in the periphery of the village, where the insects are more abundant, provides satisfying protection to the whole village. However, combining the use of insect screens in houses at the periphery of the village (to simultaneously fight insects dispersing from the garden and the forest), and the cleaning of the peri-domicile areas of the centre of the village (where sylvatic insects are absent), would provide a cost-effective control. This type of spatially mixed strategy offers a promising way to reduce the cost associated with the repeated interventions required to control non-domiciliated vectors that permanently attempt to infest houses

    Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models

    Get PDF
    Chagas disease is one of the most important neglected diseases in Latin America. Although insecticides have been successfully sprayed to control domiciliated vector populations, this strategy has proven to be ineffective in areas where non-domiciliated vectors immigrating from peridomestic or sylvatic ecotopes can (re-)infest houses. The development of strategies for the control of non-domiciliated vectors has thus been identified by the World Health Organization as a major challenge. Such development primarily requires a description of the spatio-temporal dynamics of infestation by these vectors, and a good understanding of their dispersal. We combined for the first time extensive spatio-temporal data sets describing house infestation dynamics by Triatoma dimidiata inside one village, and spatially explicit population dynamics models. The models fitted and predicted remarkably the observed infestation dynamics. They thus provided both key insights into the dispersal of T. dimidiata in this area, and a suitable mathematical background to evaluate the efficacy of various control strategies. Interestingly, the observed and modelled patterns of infestation suggest that interventions could focus on the periphery of the village, where there is the highest risk of transmission. Such spatial optimization may allow for reducing the cost of control, compensating for repeated interventions necessary for non-domiciliated vectors

    Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker

    Get PDF
    A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained from unknown strains in both chromatogram and FASTA format

    Effect of guava extracts on heat resistance of Salmonella Typhimurium

    No full text
    10.1007/s10068-013-0280-9Food Science and Biotechnology2261779-178
    corecore